Annex 1: Resources to be committed to the 3rd RAWFIE Open Call

The following tables describe the resources, which will be made available to the 3rd Open Call by each testbed.

The actual testbeds that will host the successfully evaluated experiments will be decided by the RAWFIE Consortium taking into account the needs of the experiments and the availability of RAWFIE testbeds and resources. Hence, the testbed indicated by the proposer in the proposal is only an indication and it is not restrictive for the RAWFIE consortium.

Testbed	Resources Available	UxV/activity type	Does your experiment require the
			(Y/N)?
HAI	HAI's industrial complex is located in Tanagra	(UAV Outdoor)	
	around 65 km North of city of Athens. The test-		
	bed facility consists of a runway of around 500m	5 VENAC	
	which can be used for takeoff of wing UAVs. The		
	available area will be appropriate for launching		
	up to 10 UAVs (wing or helicopter)		
HMOD	Salamina straits, a narrow passage between	(Mixed environment)	
	Attica and the Island of Salamina, in which the		
	Naval Base of Skaramagkas is able to reserve	IUTELNUS	
	inspect launch and store USVs. It provides	3 Pladvfleet	
	military grade emergency services (i.e. crash fire		
	or rescue) and has the appropriate radar facilities	7 NIRIIS	
	and systems for tracking and surveillance. In the		
	context of the project, extra telemetry and	2 VENAC	
	control facilities will be set in order to		
	accommodate the needs of the experiments.		
CATUAV	CATUAV / BCN DRONE CENTER provides testbed	(UAV Outdoor)	
	facilities consisting in a segregated air space of 25		
	square km, an airfield, a bioclimatic building and	CATUAV /BCN	
	rural terrain of 14 Ha ready to install and deploy a	DRONE CENTER	
	wide diversity of components and infrastructures,	include the exclusive	
	with no restrictions or limitations, that can cover	use of 2 UAVs for	
	a wide diversity of experiments related to UAVs	RAWFIE as UAV	
	and UGVs.	nodes.	
RT-ART	The testbed is ETOPIA, a center for Art and	(UGV Indoor)	
	Technology, (16,000 m2) located in Zaragoza,		
	Spain, and consists of three buildings linked	The testbed includes	
	together. There are five testbed options:	4 TurtleBot2 devices	

Table 1: Testbeds to be made available for the 3rd Open Call and their existing synthesis in terms of UxVs. Over the next months, ALTU, DOGMA and IGMAC devices will be integrated with RAWFIE testbeds.

	• S1 - Entrance Hall of ETOPIA building (425.91		
	m2).		
	 S2 - Experimental gallery (around 800 m2). 		
	• S3 - Residence. Two floors of total area around		
	375 m2.		
	• S4 - Showroom (390 m2).		
	 S5 - Building terrace (600 m2) 		
MarEH4EU	DFKI RIC Maritime Exploration Hall (MarEH) in	(USV Indoor)	
	Bremen, Germany. This large (23x19x8m)		
	basin is filled with salt water and allows to test	7 PlaDyFleet	
	surface and underwater vehicles		
		3 NIRIIS	
CESA	CESA provides 4 outdoor aerial testing sites :	(UAV Outdoor)	
DRONES	1. Camp de Souge and HERM		
	The main and permanent flight test area is	5 VENAC	
	located in Souge, near Bordeaux. It's a flexible		
	restricted area with protection from industrial		
	spying: 2800 ha reserved airspace, 2 000 feet		
	above mean sea level and 800m paved runway.		
	2. HERM		
	An access to this test area is given on demand,		
	located in Herm (near Dax).		
	3. Vendays-Montalivet		
	The third flight test area is located at VENDAYS		
	Montalivet. It's a restricted military area, located		
	on the Atlantic coast line, typically used for the		
	training of Defense Ministry's General Delegation		
	for Armaments (DGA) : 50 km of elongation and 7		
	km large allow long flight out of sight, 3 000 feet		
	above mean sea and 600m x 15 m paved runway.		
	4. Biscarrosse		
	The last testbed area is located at 85km S/W of		
	Bordeaux, on a civil air area, under security of		
	civil aviation, and allows 15 km of elongation, and		
	5 km large, 600m x 30 m paved runway and 800		
	m x 30 m grass runway.		
Aeroloop	UAV simulation infrastructure based on a	UAV virtual facility /	
	hardware-in-the-loop and software-inthe-	emulator	
	loop approach, which will allow users to perform		
	experiments in a flexible way, 24x7, without		
	requiring any human on-site support		

Table 2: UxV devices to be made available for the 3rd Open Call

UxV Devices	Specification
NIRIIS	• Boat size (L x W x H): 1,3mm x 40mm x 30mm

	Gross Weight: 9kg
	 Material: epoxy resin fiberglass
	 Power: High Power Lithium Polymer Battery
	Motor: Water-cooled brushless
	• Operational range: 1000m
	• Endurance: Up to 2 hours
	• Speed: Up to 30km/h (8m/s)
	• Payload capacity: Up to 10kg
	• Steering: Off-set Rudder
	Main Communication Frequencies: Main link:433MHz
	• Video Downlink: 1.2GHz
	• EO/Day Camera
	• IR Thermal Camera
PlaDyFleet	• Processing capabilities and data storage: NUC Intel Core i5.
,	1.6-2.7 GHz dual core, 3MB cache; SSD 120GB
	• Size and dimensions: 756x756x280 mm
	• Weight: 25 kg
	• Payload: 5 kg + water displacement
	• Battery: 12 V 600Wh AGM gel battery
	Minimum and maximum autonomy: 2 -8 hours
	• Sensors:
	 Navigation – GNSS: Real Time Kinematic Global Positioning
	System (RTK GPS)
	 Navigation – Inertial: Inertial Measurement Unit (IMU)
	Camera: Above water HD camera installed on all USVs
	Underwater camera: Installed on one USV
	• Echo sounder: Single beam echo-sounder installed on one
	USV
	• Control software: ROS Indigo running Linux Ubuntu 14.04
	Compatibility with Apache Kafka architecture
VENAC	Processing capabilities
	- Model: Raspberry Pi 3 Model B
	- CPU: ARMv8 Cortex-A53 BCM2837 64bit
	- Cores: guad-core
	- Speed: 1.2GHz
	- RAM: 1GB
	- Co-Processor: Dual Core VideoCore IV Multimedia 3D
	Sensor types
	- GPS GNSS: U-blox M8N GPS
	- Dual IMU: 2 x Inertial Measurement Units, MPU9250 9DOF
	and LSM9DS1 9DOF
	- Barometer: 1 x MS5611 altitude sensing with 10cm resolution
	- Variometer: 1x-700~10000m with 0.1m (high precision
	version) resolution
	- Temperature sensor: FrSky TEMS-01 for system temperature

FLEXUS	• Processing capabilities (type of processors, number of cores,
	speed): 1.2GHz quad-core ARMv8 CPU or 2GHz quad-core
	ARM A15 + 1.5GHz quad-core ARM v7 + single board
	computer for communications
	 Size and dimensions: 1m long, 0.5m wide
	 Weight: 10kg (approx., depending on WiFi solution)
	 Payload capability: 10kg
	Battery: 200 Wh, lithium polymer
	• Number and type or sensors: GPS receiver, IMU, video
	camera
	 Number and type of integrated network components and
	supported communication interfaces: 2 WiFi interface cards +
	2 omni-directional antennas
	• Minimum and maximum autonomy of the device: 1.2 hours
	@ 2m/s (typical), 4.5 hours @ 1m/s (typical)
	 Auto-return capability (return to the base station
	automatically)
	 Ability of the vehicle to operate as an access point
	(Remote) Control interface: QGroundControl, MAVLINK
	protocol
	 Operating Systems Linux / OpenWRT
	Over-the-air programming capabilities: Yes, through Wi-Fi
	Provision of collision avoidance mechanism: Optional
	 Compatibility with Apache Kafka architecture
	• Data storage of the vehicle: Minimum 16GB storage,
	extendable via USB drive
	Support of "safe mode" operation
	Localization capabilities (e.g., GNSS): GPS
	Ability to operate in indoor/outdoor/mixed
	• environments
	 Compliance with standards: MAVLINK, JAUS, ROS
	• Operational conditions (e.g., day/night) and temperature
	limitations: Night and day. Recommended maximum external
	temperature is 40 degrees Celsius
ALIU	10 UGVS
	Iong range (>10Km) and short range (max 1.5Km)
	Remote Control systems and First Person View Audio/Video
	teeds, simultaneously over IP streaming and Analogue RF
	• gimbal controlled HD and SD cameras with 0.0001
	LUX minimum illumination capability
	• static and 360 ₀ long range Laser rangefinders and
	mapping scanners/radars for simultaneous localization,
	mapping and multi-directional collision avoidance
	dual sensor (FLIR DUO) compact thermal and visible

	light imagers with live analogue and digital video output
	 simultaneous 2.4 GHz and 5 GHz WiFi 3x3 MIMO
	mesh networking Access Points with Mobile 4G/LTE Internet
	Connectivity and extended networking canabilities like
	Eirewall Routing VPN etc
	Thewail, Nouting, VFN, etc.
DOGMA	10 UAVs
	• The Blackhird LIAV platform
	combining the best from both worlds featuring Flying wing
	type aircraft for agility and less failure points with a fully
	composite construction usually met in larger airframes to
	ensure robustness and excellent flight characteristics that
	mostly refer to a trainer type aircraft inspired the DOGMA
	constructing team to build the Blackhird
	• Flir Duo – dual - sensor thermal imager
	combines thermal imaging with 1080p color video, analog and
	digital HDMI live video outputs and real-time remote control of
	camera functions over PWM – plus MSX multi-spectral imaging
	enhancement (four units)
	Parrot Sequoia - multispectral sensor
	that captures calibrated wavelength of Green, Red, Red-Edge
	and Near Infrared. (four units)
	• UAV - Short Range communication equipment (max
	1500m from GCS)
	for Remote Control on the 2.4GHz band and Audio/Video
	transmition on the 5.8GHz band. With multipoint telemetry
	modem, capable of swarming. (four units)
	UAV - Long Range communication equipment
	(>10000m from GCS) for Remote Control on the 800Mhz and
	Audio/Video transmition on the 1.3GHz band. With long range
	multipoint telemetry modem capable of swarming. (six units)
	• Dual day & night vision compress at 45 angle view for
	• Dual day & night vision cameras at 450 angle view for
	area parrolling & surveillance, life protection, real time
	monitoring, natural disaster damage assessment. (two units)
	Provide fully configurable (onen source) auto-nilot
	controller units on all of the LIAV's canable of determining
	nosition control actuators stream all telemetry data back to
	the operators and be fully compatible with the Apache Kafka
	architecture for PAW/EIEs AV/PO communication protocol
	architecture for RAWFIES AVRO Communication protocol.

	• Offer highly dynamic architecture in all auto-pilot controller units that fully adapts to the IoT paradigm by integrating 3G/4G LTE_2_4GHz WiFi internet connectivity as
	well as UHF 900MHz telemetry modem,
	Bluetooth connectivity and FrSky 2.4GHz R/C wireless telemetry where each one enables remote programing, control and data collection in real-time.
	Supply of two (2) Ground Control Station units (GCS) ; ground- based portable station units where the control software application is running on and communicates with the UAVs via wired or wireless telemetry. The GCS units are also equipped with communication equipment for Audio/Video reception from the UAVs.
	Supply of four (4) Power Store and two (2) Station units for storing charging and discharging all batteries supplied for UAVs and GCS.
IGMAC	12 UAVs
	 Remote Control systems and First Person View Audio/Video feeds via IP streaming to the RAWFIE management systems and Analogue RF transmission to the Ground Control Stations simultaneously. 360° long range Laser rangefinders and mapping scanners/radars for simultaneous localization, mapping and multi-directional collision avoidance dual sensor (FLIR DUO) compact thermal and visible light imagers with live analogue and digital video output multispectral sensor (Parrot SEQUOIA) that captures calibrated wavelength of Green, Red, Red-Edge and Near Infrared. simultaneous 2.4 GHz 2x2 MIMO WiFi Access Points with Mobile 4G/LTE Internet Connectivity and extended networking capabilities, like Firewall, Routing, VPN, etc.

Annex 2: Experiment Work Plan and Timing

The submitted should sufficiently describe the experiment procedure, by covering the following sections:

1. Experiment design:

• Description of the experiment

- Use of the RAWFIE offered facilities
- Why the RAWFIE testbed is needed for the experiment
- Description of test scenarios, measurements and expected results of the experiment.
- In the case of new testbed extensions, the proposer should take over any implementation and integration activities

2. Experiment Setup

- Describe the experiment procedure.
- Which components will be used
- Implementation of the software to be used for the experiment

3. Experiment execution

- Experiment running and evaluation of the results
- 4. Reporting
 - Reporting on the experiment outcome
 - Recommendations for improvements on the RAWFIE platform

5. Dissemination

- Dissemination actions (conferences, workshops, FIRE events, etc.)
- Set up of Demonstrations to be used for further promotion of the RAWFIE facilities

Timing:

- Duration: 10 months
- Major milestones:
 - Experiment design
 - o Experiment set-up
 - Experiment execution
 - Experiment feedback
 - Dissemination, showcase

More information can be found on the project's website (<u>http://www.rawfie.eu/</u>).